Ideal Class Groups of Cyclotomic Number Fields I

نویسنده

  • FRANZ LEMMERMEYER
چکیده

Following Hasse’s example, various authors have been deriving divisibility properties of minus class numbers of cyclotomic fields by carefully examining the analytic class number formula. In this paper we will show how to generalize these results to CM-fields by using class field theory. Although we will only need some special cases, we have also decided to include a few results on Hasse’s unit index for CM-fields as well, because it seems that our proofs are more direct than those in Hasse’s book [2].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclotomic Fields

Cyclotomic fields are an interesting laboratory for algebraic number theory because they are connected to fundamental problems Fermat’s Last Theorem for example and also have relatively simple algebraic properties that makes them an excellent laboratory for results in algebraic number theory. I will assume that you are familiar with basic algebraic number theory. Namely, the unique factorizatio...

متن کامل

Ideal Class Groups of Cyclotomic Number Fields Ii

We first study some families of maximal real subfields of cyclotomic fields with even class number, and then explore the implications of large plus class numbers of cyclotomic fields. We also discuss capitulation of the minus part and the behaviour of p-class groups in cyclic ramified p-extensions. This is a continuation of [13]; parts I and II are independent, but will be used in part III. 6. ...

متن کامل

Karl Rubin Henri Darmon September 9 , 2007

1. Thaine’s “purely cyclotomic” method [Th88] for bounding the exponents of the ideal class groups of cyclotomic fields. The bounds that Thaine obtained were already known thanks to the proof of the Main Conjecture by Mazur andWiles, in which unramified abelian extensions of cyclotomic fields were constructed from reducible two-dimensional Galois representations occuring in the Jacobians of mod...

متن کامل

Class invariants and cyclotomic unit groups from special values of modular units . par Amanda

In this article we obtain class invariants and cyclotomic unit groups by considering specializations of modular units. We construct these modular units from functional solutions to higher order q-recurrence equations given by Selberg in his work generalizing the Rogers-Ramanujan identities. As a corollary, we provide a new proof of a result of Zagier and Gupta, originally considered by Gauss, r...

متن کامل

Class invariants and cyclotomic unit groups from special values of modular units

In this article we obtain class invariants and cyclotomic unit groups by considering specializations of modular units. We construct these modular units from functional solutions to higher order q-recurrence equations given by Selberg in his work generalizing the Rogers-Ramanujan identities. As a corollary, we provide a new proof of a result of Zagier and Gupta, originally considered by Gauss, r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998